Reducing data acquisition for light‐sheet microscopy by extrapolation between imaged planes

Graham Bruce
Tuesday 7 April 2020

Ziv Shemesh, Gal Chaimovich, Liron Gino, Nisan Ozana, Jonathan Nylk, Kishan Dholakia, and Zeev Zalevsky

J. Biophotonics Advanced Online Publication: doi 10.1002/jbio.202000035

Light sheet fluorescence microscopy (LSFM) is a powerful technique that can provide high resolution images of biological samples. Therefore, this technique offers significant improvement for 3D imaging of living cells. However, producing high‐resolution 3D images of a single cell or biological tissues, normally requires high acquisition rate of focal planes, which means a large amount of sample sections. Consequently, it consumes a vast amount of processing time and memory, especially when studying real‐time processes inside living cells. We describe an approach to minimize data acquisition by interpolation between planes using a phase retrieval algorithm. We demonstrate this approach on LSFM datasets and show reconstruction of intermediate sections of the sparse samples. Since this method diminishes the required amount of acquisition focal planes, it also reduces acquisition time of samples as well. Our suggested method has proven to reconstruct unacquired intermediate planes from diluted datasets up to 10x fold. The reconstructed planes were found correlated to the original pre‐acquired samples (control group) with correlation coefficient of up to 90%. Given the findings, this procedure appears to be a powerful method for inquiring and analyzing biological samples.

Related topics

Share this story